C. elegans PVF-1 inhibits permissive UNC-40 signalling through CED-10 GTPase to position the male ray 1 sensillum.
نویسندگان
چکیده
Graded distributions of netrin and semaphorin guidance cues convey instructive polarity information to migrating cells and growth cones, but also have permissive (i.e. non-polarity determining) functions in mammalian development and repair. The permissive functions of these cues are largely uncharacterised at a molecular level. We found previously that UNC-6 (netrin) signals permissively through UNC-40 (DCC) and UNC-5 receptors to prevent anterior displacement of the ray 1 sensillum in the C. elegans male tail. UNC-6/UNC-40 signalling functions in parallel with SMP-1 (semaporin 1)/PLX-1 (plexin) signalling to prevent this defect. Here, we report that a deletion allele of pvf-1, which encodes a VEGF-related protein, causes no ray 1 defects, but enhances ray 1 defects of a plx-1 mutant, and unexpectedly also suppresses unc-6(ev400)-null mutant ray 1 defects. These mutant ray 1 inductive and suppressive effects are mimicked by the ability of unc-40(+) and ced-10(gain-of-function) multi-copy transgene arrays to induce ray 1 defects or suppress unc-6 mutant ray 1 defects, depending on their dosage, suggesting the pvf-1 mutation causes UNC-40 overactivity that interferes with signalling but is partially sensitive to UNC-6. Additional data suggest PVF-1 functions through four VEGF receptor-related proteins and inhibits only CED-10 (a GTPase), but not MIG-2-dependent UNC-40 activity, even though UNC-40 functions through both GTPases to position ray 1. pvf-1 and receptor mutant ray 1 defects are rescued by transgenes expressing mouse VEGF164 and human VEGF receptors, respectively. These data report the first case of VEGF-induced inhibition of the netrin signalling and a molecular conservation of VEGF function from worms to humans.
منابع مشابه
Semaphorin-1 and netrin signal in parallel and permissively to position the male ray 1 sensillum in Caenorhabditis elegans.
Netrin and semaphorin axon guidance cues have been found to function in the genesis of several mammalian organs; however, little is known about the underlying molecular mechanisms involved. A genetic approach could help to reveal the underpinnings of these mechanisms. The most anterior ray sensillum (ray 1) in the Caenorhabditis elegans male tail is frequently displaced anterior to its normal p...
متن کاملConversion of cell movement responses to Semaphorin-1 and Plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans.
Plexins are functional receptors for Semaphorin axon guidance cues. Previous studies have established that some Plexins directly bind RAC(GTP) and RHO. Recent work in C. elegans showed that semaphorin 1 (smp-1 and smp-2) and plexin 1 (plx-1) are required to prevent anterior displacement of the ray 1 cells in the male tail (Fujii et al., 2002; Ginzburg et al., 2002). We show genetically that plx...
متن کاملSLI-1 Cbl Inhibits the Engulfment of Apoptotic Cells in C. elegans through a Ligase-Independent Function
The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway, which includes the small GTPase CED-10 Rac and the cytoskeletal regulator ABI-1, acts to rearrange the cytoskeleton of the engulfing cell. The CED-10 Rac pathway is also...
متن کاملFlavin monooxygenases regulate Caenorhabditis elegans axon guidance and growth cone protrusion with UNC-6/Netrin signaling and Rac GTPases
The guidance cue UNC-6/Netrin regulates both attractive and repulsive axon guidance. Our previous work showed that in C. elegans, the attractive UNC-6/Netrin receptor UNC-40/DCC stimulates growth cone protrusion, and that the repulsive receptor, an UNC-5:UNC-40 heterodimer, inhibits growth cone protrusion. We have also shown that inhibition of growth cone protrusion downstream of the UNC-5:UNC-...
متن کاملAbl Kinase Inhibits the Engulfment of Apoptotic [corrected] Cells in Caenorhabditis elegans
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. The engulfment of apoptotic cells is required for normal metazoan development and tissue remodeling. In Caenorhabditis elegans, two parallel and partially redundant conserved pathways act in cell-corpse engulfment. One pathway includes the adaptor protein CED-2 CrkII and the sm...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 140 19 شماره
صفحات -
تاریخ انتشار 2013